Sequential Decision Making in Non-stochastic Environments
نویسندگان
چکیده
Sequential Decision Making in Non-stochastic Environments
منابع مشابه
Stochastic Decision Making in Manufacturing Environments
Decision making plays an important role in economics, psychology, philosophy, mathematics, statistics and many other fields. In each field, decision making consists of identifying the values, uncertainties and other issues that define the decision. In any field, the nature of the decisions is affected by environmental characteristics. In this paper, we are considered the production planning pro...
متن کاملEfficiency and Effectiveness with interval indices in stochastic environments
Non-parametric DEA is a technique on the basic of mathematical programming to determine the efficiency of homological decision making units. DEA models changes in demand cause changes in variations in output levels and also will cause changes in a firm’s inefficiency. Often a firm can adjust input influencing on the output level. Models designed with technique on DEA that considers changes in d...
متن کاملNon-Deterministic Policies In Markovian Processes
Markovian processes have long been used to model stochastic environments. Reinforcement learning has emerged as a framework to solve sequential planning and decision making problems in such environments. In recent years, attempts were made to apply methods from reinforcement learning to construct adaptive treatment strategies, where a sequence of individualized treatments is learned from clinic...
متن کاملConvergence in a sequential two stages decision making process
We analyze a sequential decision making process, in which at each stepthe decision is made in two stages. In the rst stage a partially optimalaction is chosen, which allows the decision maker to learn how to improveit under the new environment. We show how inertia (cost of changing)may lead the process to converge to a routine where no further changesare made. We illustrate our scheme with some...
متن کاملNon-Deterministic Policies in Markovian Decision Processes
Markovian processes have long been used to model stochastic environments. Reinforcement learning has emerged as a framework to solve sequential planning and decision-making problems in such environments. In recent years, attempts were made to apply methods from reinforcement learning to construct decision support systems for action selection in Markovian environments. Although conventional meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012